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About us 

I am a postdoc at the Global Health Resilience group 
at the BSC. My background is in Veterinary Medicine, 

and I have a PhD in Epidemiology studying dengue 
virus vector surveillance and control. 

Currently I am working on developing R packages to 
facilitate disease risk modeling and prediction using 

Bayesian spatio-temporal models in INLA. 

I am a data scientist at the Global Health Resilience 
group at the BSC. My background is in statistics and 

geoinformatics, and I have a PhD in spatial 
modelling for exposure assessment. 

I am currently working on developing R packages for 
climate-sensitive data processing and modelling.

Carles Milà Ania Kawiecki Peralta



Webinar Outline

1. Climate sensitive-diseases.

2. Health impact of climatic variables and climate change.

3. Climate-informed early warning systems.

4. Data structure, pre-processing and exploration.

5. Questions at the end!
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Climate-sensitive diseases



Di Napoli et al. Meteorological Applications 2022

Health impacts of climate change

George Luber adapted from Patz et al. et Nature 2005

Climate-sensitive infectious diseases



Alcayna et al., Lancet Planet Health 2025

Climate-sensitive infectious diseases



Shocket et al., Oxford University Press 2020 Alcayna et al., Lancet Planet Health 2025

Climate-sensitive infectious diseases - vector-borne diseases



Alcayna et al., Lancet Planet Health 2025Jones et al., J Water Health 2020

Climate-sensitive infectious diseases - water-borne diseases
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Health impact of climatic 
variables and climate change



Temperature

IPCC 6th Assessment report, WG1, Technical Summary



Mordecai et al., Ecology Letters 2019

Effect on disease transmission-relevant vector traits

Temperature



Mordecai et al. Lancet Planetary Health 2020
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Barcellos et al. Nature Scientific Reports 2024

Shifts in geographical distribution of disease

Mordecai et al. Lancet Planetary Health 2020

ProjectedObserved
Kenyan children from 2014 to 2018 

Brasil - dengue incidence 

Temperature

Malaria
Dengue, 
Zika, 
CHIKV



Extreme precipitation and drought

Extreme precipitation events over time
Average number of annual extreme precipitation events per 79 km2
 average land area in baseline years (1961–90) and during the most recent 
30-year period (1994–2023).

Romanello et al. Lancet 2024



Shocket et al., Oxford University Press 2020

Extreme precipitation and drought

Effect on vector-borne diseases



Oceanic indices

Climate change is expected to influence ENSO by changing ocean–atmosphere interactions in the tropical Pacific, 

potentially affecting its intensity, rainfall patterns, and global impacts, but there is still considerable uncertainty about 

how ENSO frequency and strength will change in the future (IPCC AR6 WGI, 2021)



Oceanic indices

ENSO (El Nino Southern Oscillation) and IOD (Indian Ocean Dipole) are potential drivers of interannual 
variation in climate-sensitive infectious disease patterns.

Eastin et al.,  Am. J. Trop. Med. Hyg.,2014

In this study in Cali, 
Colombia, dengue 
incidence often peaked 
4–6 months after an El 
Niño event associated 
with above-average local 
temperatures and 
below-average local 
rainfall and humidity.

Ma et al., Biology 2022



Non-linear, lagged and interacting effects 

Non-linear effects

Pathogen traits (e.g. viruses, bacteria and 
parasites):

- Replication and development rates
- Survival and mortality

Ectothermic vector traits (e.g. mosquitoes, ticks, 
sandflies, midges, blackflies, and snails):

- Reproduction and development rates
- Survival and mortality
- Biting rate
- Vector competence (the probability of 

becoming infectious after biting an infectious 
host)

Can have a non-linear effect on 

Alcayna et al., Lancet Planet Health 2025

Ma et al., Biology 2022



Non-linear, lagged and interacting effects 

Non-linear effects
The effect of temperature on dengue virus transmission is non-linear.

Thermal responses of Ae. aegypti and DENV traits that drive transmission

Ae. aegypti transmission peaks at 29.1°C.

Mordecai et al. PLOS NTD 2017



Non-linear, lagged and interacting effects 

Lagged effects

Climate-sensitive infectious diseases often have a delayed response to climate drivers. Delays might be due to: 
- vector or non-human host lifecycles
- the extrinsic and intrinsic incubation period of the pathogen
- the time between symptom onset and health-seeking behaviour.

Cheng et al., Front. in Public Health 2023

Life stages of Aedes mosquitoes and transmission of dengue virus



Non-linear, lagged and interacting effects 

Lagged effects
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Lowe et al. Lancet Planetary Health 2021

The effect of temperature on dengue virus transmission is non-linear and lagged. 
In this study in Brazil the greatest relative risk (RR) of dengue was found at Tmin of 25.5°C at a lag of 2–4 months.



Non-linear, lagged and interacting effects 

Interacting effects

Non-climatic factors can modulate disease transmission:
- Habitat degradation and land-use change: 

- influence the density and contact among reservoirs, vectors, and humans
- modify local climatic and environmental conditions.

- Urbanisation and human infrastructure (e.g. sanitation and water systems)
- Population demographics and socio-economic factors: can influence susceptibility and vulnerability to disease.
- Behavioural factors (such as clothing, use of insect repellent, time spent outdoors)



Non-linear, lagged and interacting effects 

Lowe et al. Lancet Planetary Health 2021
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Interacting effects
In this study in Brazil there was an interacting effect between urbanization level and extreme values of PDSI: the greater 
the level of urbanisation, the higher the risk of dengue after extreme drought, while at lower levels of urbanisation the 
relative risk of dengue after extremely wet conditions was greater and more immediate.



Fletcher et al. Lancet Planetary Health 2025

Non-linear, lagged and interacting effects 

Climatic factors can interact with each other at short and long lags leading to a compound effect on disease risk.
Excessive rainfall following a period of abnormally low rainfall or drought is important for outbreaks of cholera, 
diarrheal diseases, and dengue. 

In this study in Barbados, long-lag dry (lagged by 5 months), mid-lag hot (lagged by 3 months), and short-lag wet 
(lagged by 1 month) conditions led to the greatest dengue risk



Alcayna et al. One Earth, 2022

Climate variables associated with infectious diseases 
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Climate-informed 
early warning systems



Climate-informed early warning systems: lead times

For vector-borne diseases, 
a typical lead time ranges 

from 1 to 6 months 

Climate-informed early warning systems integrate climate data to 
predict the risk of an infectious disease outbreak. 
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Early warning systems: engagement

Stages involved in the co-creation of an early warning system for vector-borne disease

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation
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Early warning systems: feasibility

Stages involved in the co-creation of an early warning system for vector-borne diseases

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation
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Early warning systems: development

Stages involved in the co-creation of an early warning system for vector-borne disease

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation
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Early warning systems: development

Statistical Mechanistic
Machine 
learning

● Capture the underlying biological 
processes, population immunity, 
contact patterns, population 
mobility and control measures.

● Require deep understanding and 
many assumptions, not always 
feasible/realistic.

● Examples: compartmental model, 
agent-based models

● Characterise the relationship 

between outcome and exposure 

under a set of assumptions. 

● Require long time series.

● Can produce reliable uncertainty 
estimates. 

● Examples: hierarchical models, 
ARIMA models.

● More flexible than statistical 
models, can achieve better 
results but require more data.

● More difficult interpretation and 
uncertainty quantification.

● Examples: neural networks, 
random forest.
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Early warning systems: development

Stages involved in the co-creation of an early warning system for vector-borne disease

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation
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Early warning systems: development

Expanding window 

Fletcher 2025
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Early warning systems: development

Expanding window cross-validation

Fletcher 2025



34

Early warning systems: implementation

Stages involved in the co-creation of an early warning system for vector-borne disease

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation



Early warning systems: implementation

TAKE ACTION

BE AWARE

BE PREPARED

ROUTINE ACTION

Barbados - Dengue forecast

Associated 

levels of 

intervention

● Predicting cases vs. outbreaks.
● Translate complex results into clear insights.
● Conveying uncertainty. Fletcher et al. Lancet Planetary Health 2025
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Early warning systems: implementation

Stages involved in the co-creation of an early warning system for vector-borne disease

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation
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Early warning systems: evaluation

Stages involved in the co-creation of an early warning system for vector-borne disease

1. Engagement

2. Feasibility study

3. Development

4. Implementation

5. Evaluation



Choice of climate product matters

Data structure, pre-processing 
and exploration 
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Types of data

Location-
dependent

Variable of 
interest

Population 
at risk

Vulnerability 
and 

inequality

Water 
indices

Vegetation 
indices

Type 
depends 
on EWS

Temperature, 
precipitation, 

oceanic 
indices
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Data structure

Regular time series of one or several areas containing:

● Temporal ID (date)

● Spatial ID (area)

● Diseases counts for a specific time/area

● Population at risk for a specific time/area

● Predictors:

○ Spatio-temporal: climate

○ Temporal: ENSO indicator

○ Spatial: climate area (Köppen)
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Pre-processing: temperature and precipitation rolling statistics

Cumulative climate data can capture factors that a single-point variable doesn’t reflect:

● Temperature (average): 
○ Duration of warm/cold conditions -> vector cycle

● Precipitation (sum):
○ Persistent low precipitation -> drought
○ Persistent high precipitation -> high soil moisture and humidity

Date Temperature Temperature - 3 months

2015-01-01 12

2015-02-01 13

2015-03-01 15 13.3

2015-04-01 17 15

2015-05-01 20 17.3

2015-06-01 23 20

Averaging times depend on the 
health outcome.

Vector-borne: 3-12 months.
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Pre-processing: temperature and precipitation anomalies

We can create anomaly indices to compare the precipitation for a given location and time 
to their respective climatologies (30+ years of historical data)

1. We compute historical monthly means and standard 
deviations for each location in our dataset.

2. We standardise the values (z-scores) in our dataset 
using these values.

Precipitation values require an 
extra standardization step due to 
their skewed distribution  

 https://doi.org/10.1175/2009JCLI2909.1 
 

Temperature anomaly

https://doi.org/10.1175/2009JCLI2909.1
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Pre-processing: lagging climate data

We want of include lags of the exposures because:

● Delayed effects.

● Be able to use observations in forecasts.
○ If we use a 3-month lag, we will be able to predict in 3 months using the 

observed weather today.

Date Temperature Temperature - lag 3

2015-01-01 12

2015-02-01 13

2015-03-01 15

2015-04-01 17 12

2015-05-01 20 13

2015-06-01 23 15

The lag value will depend on the 
health outcome.

Vector-borne: 1-6 months.
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Exploring: temporal component

Time series

Seasonality plots
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Exploring: spatial and spatio-temporal component

Choropleth maps Heatmaps
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Exploring: correlation

Correlation matrices

Dual-axis time series

Scatterplots
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