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About us 

I am a postdoc at the Global Health Resilience group 
at the BSC. My background is in Veterinary Medicine, 

and I have a PhD in Epidemiology studying dengue 
virus vector surveillance and control. 

Currently I am working on developing R packages to 
facilitate disease risk modeling and prediction using 

Bayesian spatio-temporal models in INLA. 

I am a data scientist at the Global Health Resilience 
group at the BSC. My background is in statistics and 

geoinformatics, and I have a PhD in spatial 
modelling for exposure assessment. 

I am currently working on developing R packages for 
climate-sensitive data processing and modelling.

Carles Milà Ania Kawiecki Peralta



Webinar Outline

1. Introduction: Linear model recap

2. Hierarchical generalized linear models (from a Bayesian perspective) 

○ Introduction to generalized linear models

○ Basics of Bayesian inference

○ Hierarchical models

3. Model terms in a spatiotemporal context

4. Forecasting for early warning systems

5. Questions at the end!
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Linear model recap



Linear model revisited

disease_cases ~ rainfall + mean_temperature

β
0
  (intercept): number of dengue cases expected if 

rainfall = 0 and mean temperature = 0 

β
1
  = how many more cases you expect per 1 unit increase 

in rainfall, holding mean temperature constant

β
2
  = how many more cases you expect per 1 unit increase 

in mean temperature, holding rainfall constant 

ε
i   

= error term



Linear model revisited

What are (some) of the assumptions in this model?

● Linearity in the predictors: In the last webinar we saw that some variables have non-linear 
effects.

● Conditional independence of the observations: Our data are structured in space and time 
and therefore have autocorrelation.

● The response is Normally distributed conditional on the predictors and parameters: Not 
true for disease case counts.

where

𝜇: mean of the distribution

σ2: variance of the distribution



Linear model revisited

disease_cases ~ rainfall + mean_temperature

How can we take into 
account the disease 

seasonality?

How can we take into 
account the interannual 

variation in cases?

How can we incorporate 
non-linear relationships?

How can we account for 
differences and correlation 

between spatial areas?

Can we improve the model to 
reflect the distribution of the 

case count data?

How do we use this model for 
forecasting and to account 

for uncertainty?

There’s room for improvement! 
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Hierarchical generalized 
linear models 
(from a Bayesian perspective) 

○ Introduction to generalized linear models

○ Basics of Bayesian inference

○ Hierarchical models



Generalised linear model: motivation

Our linear model:

Some reasons this is problematic to predict disease case counts:

● We could predict negative cases (e.g. -2)

● We could predict non-integer cases (e.g. 4.3)

● Assumes that the variance is constant and is independent from the mean.

○ We know that the variance of a count scales with the mean: If the mean count 𝜇 
is large, the variance σ2 will also be larger.



Generalised linear model: components

Enter the Generalized Linear Model (GLM)
θ: Other parameters of 

the modelf: A distribution in the 
Exponential family

g: Link function
Linear predictor

𝜇: The mean of 
the distribution



Generalised linear model: distributions

Distributions suitable for count data
 (integer support):

● Poisson:
variance = mean

● Negative Binomial: 
variance > mean

(i.e. overdispersion)

Disease case counts usually exhibit overdispersion: 
Negative Binomial is often used



Generalised linear model: link function

As a link function, we use the log. Therefore, our GLM tailored for case counts becomes:

Why use the log as link function?

● Ensures that the mean is positive.

● Multiplicative effect of covariates, useful to capture skewed case counts.



Generalised linear model: interpreting coefficients

How can we interpret the model coefficients ꞵ
1
 and ꞵ

2
 ?

● ꞵ
1
:
 
increasing the temperature by 1 makes the log(μ

i
) increase by ꞵ

1 

○ ꞵ
1 

< 0 means a decrease in risk while
 
ꞵ

1 
> 0 means an increase in risk.

● exp(ꞵ
1
): can be interpreted as the multiplicative factor on the mean count per unit increase 

in temperature. Why?



Generalised linear model: population offset

We have disease case counts that vary in space and time:

● The population at risk varies in time and space so it’s difficult to compare counts.

● Could we standardize them somehow?

Model 
counts

Model rates

We add a population offset 
to model rates rather than 

counts

Population 
at risk



Bayesian inference

Bayesian inference allows us to estimate model parameters while characterizing 
their uncertainty through their full probability distributions.



Bayesian inference : likelihood, priors and posteriors

3 main components in Bayesian estimation:

● Prior distribution: Our prior beliefs about the parameters before observing the data.

● Likelihood: How probable the observed data are given the model parameters.

● Posterior distribution: Updated beliefs about the parameter after observing the data.

Bayesian inference updates the 
prior using the information in the 

data (likelihood) to get the posterior.



Bayesian inference : how to choose priors

● Priors are specified before fitting the model to the current data

● Unless we have very strong evidence, weakly informative priors are often a good default.

● Weakly informative priors:

○ Allow the data to dominate when information is strong.

Weakly informative prior for ꞵ 



Bayesian inference : posterior predictive distribution 

Why Bayesian in early warning systems?

We also obtain a probability distribution for the predictions: the posterior predictive distribution.

We can calculate uncertainty intervals directly in 
the distribution: credible intervals

We can calculate the probability of exceeding a 
threshold: outbreak probability



…
…

Hierarchical models



Hierarchical models

i: individual-level j: group-level

…
…



Hierarchical models

Gelman and Hill Cambridge University Press 2006

The average number of cases 
observed at the mean temperature in 
each region varies, 
but the effect of temperature on 
dengue cases is the same

The average number of cases 
observed at the mean temperature in 
each region is the same, but the 
effect of temperature on dengue 
cases varies

The average number of cases observed 
at the mean temperature in each region 
varies, AND the effect of temperature on 
dengue cases varies

How to handle variation between groups
 Single-level/non-hierarchical approach

is the group 
corresponding 
to individual i

where



Hierarchical models

Gelman and Hill Cambridge University Press 2006

(1) Complete pooling: assumes there are no differences 

between the groups. (Equivalent to taking the average number of 

cases over the entire population or simple linear regression). 

(2) No pooling: assumes that each group tells us nothing 

about any other group. (Equivalent to a separate linear regression 

for each group or a varying intercept model).

(3) Partial pooling: pools information across groups by 

assigning a probability distribution to each group intercept, 

pulling the group intercept towards the total mean, but 

allows it to vary by group. (Allows variation of the group-level 

mean around the total mean). 

Rowe and Arribas-Bel 2023

How to handle variation between groups

Multilevel/hierarchical approach



Hierarchical models

Gelman and Hill Cambridge University Press 2006

Number of observations in each group  j
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Shrinkage towards the population mean 

Estimates in groups with fewer observations are 
more variable with higher standard errors. 
Estimates in groups with many observations are
close to estimate resulting from partial pooling. 

Estimates in groups with fewer observations are closer 
to the complete pooling estimate.

Number of observations in each group  j
1              50          100        150          200

Partial pooling
How to handle variation between groups



Hierarchical models

Advantages of hierarchical models

McElreath Chapman and Hall/CRC 2020

- Improved estimates for repeated sampling: When more than one observation arises 
from the same group (individual, location, or time), then traditional, single-level 
models either underfit or overfit the data.

- Improved estimates for imbalance in sampling: When some groups are sampled 
more than others, multilevel models prevent over-sampled groups from unfairly 
dominating inference.

- Estimates of variation: multilevel models model variation explicitly, allowing the 
exploration of individual-level and group-level variation. 

- Avoid averaging, retain variation: Frequently, scholars pre-average some data to 

construct variables for a regression analysis. This can be dangerous, because averaging 

removes variation. Multilevel models allow us to preserve the uncertainty in the 

original, pre-averaged values, while still using the average to make predictions. 



Hierarchical models

McElreath Chapman and Hall/CRC 2020

Estimates y, the model 
outcome (e.g. case counts), 
for each observation

Hyperparameters

Estimates      , the intercept 
per group (e.g. average 
number of case counts in 
each region)

Hyperpriors

Multilevel/hierarchical approach
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Model terms



Capturing group-level uncertainty - Interannual

Interannual patterns: is 
there a common pattern 
in case incidence every 
several years, e.g. does 
every third year usually 
have more cases on 
average than July?
Autocorrelation: Are 
years close to each other 
more likely to have 
similar values?

Here we assume years are iid, 
that is, independent from each 
other. Other approaches: 
random walk order 1 or 2.



Capturing group-level uncertainty - Seasonal

Seasonality: is there a common pattern 
in case incidence every year, e.g. does 
January usually have more cases on 
average than July?
Autocorrelation: Are years close to each 
other more likely to have similar values?

Here we use a 
random walk order 1. 
Other approaches: 
random walk order 2.



Capturing group-level uncertainty - Spatial

Autocorrelation: Are regions close to 
each other more likely to have similar 
values?

Regional patterns: is there a common pattern in case 
incidence in certain regions, e.g. do the northern regions 
usually have more cases on average than the southern 
ones?

Moraga Chapman and Hall/CRC 2019



Capturing group-level uncertainty - Spatial

Here we use a BYM2 prior for the 
spatial effect.  Other approaches 
include BYM, ICAR, CAR models

Structured 
spatial effect

Unstructured 
spatial effectg is an adjacency matrix used to 

calculate the ICAR (Intrinsic 
Conditional Auto-Regressive) model 
used for the prior of the structured 
spatial effect. 
The effect of each area i is normally 
distributed with a mean equal to the 
average of its neighbors and a 
variance decreasing with the 
number of neighbors.

Moraga Chapman and Hall/CRC 2019

= neighbors of area i

= number of neighbors of area i

ICAR model



Predictor effects - Linear



Predictor effects - Non-linear

Temperature anomaly

C
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Temperature anomalyTemperature anomaly

Polynomials
second order polynomial third order polynomial

McElreath Chapman and Hall/CRC 2020



Splines

McElreath Chapman and Hall/CRC 2020

basis function

Divide the range of x 
variable into parts.
Each part has:
B: basis function: a 
“synthetic” predictor 
variable 
w: weight parameter: 
acts like a slope, 
adjusting the influence 
of each basis function 
on the mean 

parameter

Predictor effects - Non-linear



Splines

Divide the range of x 
variable into 4 parts 
using 5 knots placed 
at even quartiles of 
the data.  
B: basis function: 
tells you how close 
you are to each knot. 

knot

McElreath Chapman and Hall/CRC 2020

Predictor effects - Non-linear



Splines w: weight parameters: 
are estimated by fitting 
the model to the data. 
They can be positive or 
negative. 

Each basis function (B) is 
multiplied by its 
corresponding weight 
parameter (w). 
To predict for a given 
value of x, add the 
weighted basis functions 
for that value. 

Predictor effects - Non-linear

McElreath Chapman and Hall/CRC 2020



How to define spline flexibility? 
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McElreath Chapman and Hall/CRC 2020
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- Number of knots
- Placement of knots:
Usually at evenly spaced 
intervals (equal number 
of x values) or     
quantiles (equal number 
of observations)
- Polynomial degree: 
defines how many basis 
functions combine at 
each point (value of x), 
that is, how many 
parameters interact to 
produce the spline. 

Knots = 5; Polynomial degree = 1 Knots = 15; Polynomial degree = 3

Predictor effects - Non-linear
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Forecasting for early 
warning systems



Early warning systems: Predicting case counts

With the fitted model, we can predict case 
counts (posterior predictive distribution).

Fletcher et al (2025)



Early warning systems: Outbreaks

We can calculate the probability of 
exceeding a threshold: outbreak probability

How do we define the outbreak threshold?

● A quantity defined with the stakeholders.

● A certain quantile of the observed cases.

● Mean + ɸ · SD.

?

Alternatively, we can communicate our predictions in terms of outbreaks (yes/no) 
that can trigger the early warning system.



40

Early warning systems: computing probability trigger threshold

We can communicate the probability of 
outbreaks using different ranges

We can also see how our systems performs 
using cross-validation 

Source: Fletcher et al. (2025)
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Time for questions
Ania Kawiecki Peralta (ania.kawiecki@bsc.es) 
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