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1. Introduction: Linear model recap

2. Hierarchical generalized linear models (from a Bayesian perspective)
o Introduction to generalized linear models
o Basics of Bayesian inference
o Hierarchical models

3. Model terms in a spatiotemporal context

4. Forecasting for early warning systems

5. Questions at the end!
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Linear model recap




Linear model revisited
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disease cases ~ rainfall + mean temperature

/NN

y; = By + B1xi1 + Poxio + €

BO (intercept): number of dengue cases expected if
rainfall = 0 and mean temperature =0

B, =how many more cases you expect per 1 unit increase
in rainfall, holding mean temperature constant

B, = how many more cases you expect per 1 unit increase
in mean temperature, holding rainfall constant

Ei = error term
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y; = Bo + B1xi1 + Boxio + € where gi ~ N(0,0)

What are (some) of the assumptions in this model?

® Linearity in the predictors: In the last webinar we saw that some variables have non-linear
effects.

e Conditional independence of the observations: Our data are structured in space and time
and therefore have autocorrelation.

e The response is Normally distributed conditional on the predictors and parameters: Not
true for disease case counts.

Yil i, o7 ~ N (4, 02) «: mean of the distribution
L; = Bo + B1zi1 + Boxio o?: variance of the distribution
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disease cases ~ rainfall + mean temperature

There’s room for improvement!

How can we take into How can we account for Can we improve the model to
account the disease differences and correlation reflect the distribution of the
seasonality? between spatial areas? case count data?
How can we take into : How do we use this model for
account the interannual s Fan we mc.orpor.ate:. forecasting and to account
variation in cases? s LRe s e e et for uncertainty?




Hierarchical generalized
linear models
(from a Bayesian perspective)

o Introduction to generalized linear models

o Basics of Bayesian inference

o Hierarchical models
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Our linear model:

Yilpi, 0% ~ N(u;, 0°)
w; = Bo + P11 + Poxio

Some reasons this is problematic to predict disease case counts:
e We could predict negative cases (e.g. -2)
e We could predict non-integer cases (e.g. 4.3)
® Assumes that the variance is constant and is independent from the mean.

o  We know that the variance of a count scales with the mean: If the mean count u
is large, the variance 02 will also be larger.
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Enter the Generalized Linear Model (GLM)

S mmm— oo B: Other parameters of
1 f: A distribution in the the model

u: The mean of :
|

Exponential famil
the distribution \ ____,i___\_f___):__ /

Yilpi, 0 ~ f(u;,0)
g(pi) = Bo + Bra;1 + Poxso

r=====- ____'; Y

/

bommmm s Linear predictor



Generalised linear model: distributions

Distributions suitable for count data
(integer support):

e Poisson:
variance = mean

e Negative Binomial:

variance > mean
(i.e. overdispersion)

Disease case counts usually exhibit overdispersion:

Count

100 A

1,000 simulations of a Poisson and NB distribution with mean = 10
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Distribution

D Poisson

I:] Negative Binomial

20 30
Value

Negative Binomial is often used
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As a link function, we use the log. Therefore, our GLM tailored for case counts becomes:
Y:L|:u7,7 0 ~ NegBln(:U’i? 9)
log(1i) = Bo + P11 + Boxio

Why use the log as link function?
® Ensures that the mean is positive.

i = exp(By + Brai1 + Foxyo)

e Multiplicative effect of covariates, useful to capture skewed case counts.

i = exp(By) - exp(Brai1) - exp(Bozio)
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Yi|pi, 0 ~ NegBin(u;, 0)
log(p;) = By + Brzi1 + Boxio

How can we interpret the model coefficients [, and [, ?

e [] :increasing the temperature by 1 makes the log(p,) increase by '],

o D1< 0 means a decrease in risk while D1> 0 means an increase in risk.

e exp(L],): can be interpreted as the multiplicative factor on the mean count per unit increase
in temperature. Why?

pi(zi + 1) = exp (50 + Bi(zin + 1) + 52582'2)
= exp (B + Biza + Botiz) - exp(Bi)

= 1i(T41) '
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We have disease case counts that vary in space and time:

e The population at risk varies in time and space so it’s difficult to compare counts.
e Could we standardize them somehow?

et > Model rates
counts
Population
at risk
YI:|/’L7:7 0 ~ NegBln(:U/ia ‘9) We add a population offset
. to model rates rather than
1
(=) = By + Brz;1 + Bozio counts

log(1i) = Bo+P1zi1+Pozio @
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Bayesian inference

Bayesian inference allows us to estimate model parameters while characterizing
their uncertainty through their full probability distributions.

0.4+

0.34

Yi|pi, 0 ~ NegBin(p;, 0)
log(pi) = 502'1 i2+l09<P’i) .

0.1+

0.0
4 8

value

parameter D Bo ’:‘ B D B2
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3 main components in Bayesian estimation:
e Prior distribution: Our prior beliefs about the parameters before observing the data.
e Likelihood: How probable the observed data are given the model parameters.

e Posterior distribution: Updated beliefs about the parameter after observing the data.

Bayesian inference updates the
prior using the information in the
data (likelihood) to get the posterior.

parameter

|| Likelihood
D Posterior
[:] Prior




Barcelona
Bayesian inference : how to choose priors @ e

e Priors are specified before fitting the model to the current data

e Unless we have very strong evidence, weakly informative priors are often a good default.

e Weakly informative priors:

o Allow the data to dominate when information is strong.

4e-04
3e-04 4
=
2 2e-044
(]
©
1e-04 1
0e+00 -
-2000 0 2000
value

Weakly informative prior for [
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Why Bayesian in early warning systems?

We also obtain a probability distribution for the predictions: the posterior predictive distribution.

0.03- 0.031

0.02 4 0.024

2 g
0.014 0.014
0.00- o : ; : . .
T T T T T 120 140 160 180 200
120 140 ;:Gr()edicﬁons 180 200 Predictions
We can calculate uncertainty intervals directly in We can calculate the probability of exceeding a

the distribution: credible intervals threshold: outbreak probability
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Hierarchical models

date micro_name dengue_cases tmin pdsi meso_name water_network
2001-01-01 Alto Taquari 22.33064 -0.67288578| Centro Norte De Mato Grosso Do Sul 86.21000
2001-02-01 | Alto Taquari 22.09503 -0.79167610 | Centro Norte De Mato Grosso Do Sul 86.21000
2001-03-01 Alto Taquari 21.65975 0.19557676 | Centro Norte De Mato Grosso Do Sul 86.21000
2001-01-01 Aquidauana 22.94171 1.60573995 | Pantanais Sul Mato-Grossense 84.18500
2001-02-01 Aquidauana 22.75295  2.24432206 | Pantanais Sul Mato-Grossense 84.18500
2001-03-01 Aquidauana 22.04041 1.54781866 | Pantanais Sul Mato-Grossense 84.18500
2001-01-01 Baixo Pantanal 23.50009 0.08895861) Pantanais Sul Mato-Grossense 84.18500
2001-02-01 Baixo Pantanal 23.27970 0.25999102§ Pantanais Sul Mato-Grossense 84.18500
2001-03-01 Baixo Pantanal 22.71204 0.26609710] Pantanais Sul Mato-Grossense 84.18500




Hierarchical models

date

2001-01-01
2001-02-01
2001-03-01

2001-01-01
2001-02-01
2001-03-01

2001-01-01
2001-02-01
2001-03-01

micro_name
Alto Taquari
Alto Taquari
Alto Taquari

Aquidauana
Aquidauana

Aquidauana

Baixo Pantanal
Baixo Pantanal

Baixo Pantanal

i: individual-level

dengue_cases

tmin

22.33064
22.09503
21.65975

22.94171
22.75295
22.04041

23.50009
23.27970
22.71204

pdsi

-0.67288578

-0.79167610
0.19557676

1.60573995
2.24432206
1.54781866

0.08895861
0.25999102
0.26609710

meso_name
Centro Norte De Mato Grosso Do Sul
Centro Norte De Mato Grosso Do Sul

Centro Norte De Mato Grosso Do Sul

Pantanais Sul Mato-Grossense
Pantanais Sul Mato-Grossense

Pantanais Sul Mato-Grossense

Pantanais Sul Mato-Grossense
Pantanais Sul Mato-Grossense

Pantanais Sul Mato-Grossense
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j: group-level

meso_name

Centro Norte De Mato Grosso Do Sul
Pantanais Sul Mato-Grossense
Sudoeste De Mato Grosso Do Sul

Leste De Mato Grosso Do Sul

water_network
86.21000
84.18500
78.20667
79.41250




Hierarchical models

Varying intercepts

W

How to handle variation between groups
Single-level/non-hierarchical approach

Varying slopes

<

The average number of cases
observed at the mean temperature in
each region varies,

but the effect of temperature on
dengue cases is the same

=% + px + €,

y,=a+ ,Bj[i]x. + €.

l 1

The average number of cases
observed at the mean temperature in
each region is the same, but the
effect of temperature on dengue
cases varies
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Varying intercepts and slopes

where j[i]
is the group

corresponding
to individual i

= AP+ E.
Vi T\t [Pt e
The average number of cases observed
at the mean temperature in each region
varies, AND the effect of temperature on
dengue cases varies

Gelman and Hill Cambridge University Press 2006
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How to handle variation between groups

(1) Complete pooling: assumes there are no differences Y, ~ N( M 02)
between the groups. (Equivalent to taking the average number of

cases over the entire population or simple linear regression). T e ﬂxi

(2) No pooling: assumes that each group tells us nothing  y. ~ N( M 02) P

about any other group. (Equivalent to a separate linear regression =a..+ P, Z

for each group or a varying intercept model). ! jlil ! ——
Multilevel/hierarchical approach M,

(3) Partial pooling: pools information across groups by Y~ N(Ml-a 62)

assigning a probability distribution to each group intercept,

pulling the group intercept towards the total mean, but Hi=%mt Px;

allows it to vary by group. (Allows variation of the group-level / s A

mean around the total mean). aj ~ N(,ua, 6a> aj aj aj aj aj

Gelman and Hill Cambridge University Press 2006 Rowe and Arribas-Bel 2023



Hierarchical models

Estimated average number of

estimated cases in group j ( aj)

How to handle variation between groups
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No pooling Partial pooling
R Q]
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Number of observations in each group j
Estimates in groups with fewer observations are
more variable with higher standard errors.
Estimates in groups with many observations are
close to estimate resulting from partial pooling.
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Estimates in groups with fewer observations are closer
to the complete pooling estimate.

Gelman and Hill Cambridge University Press 2006
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Advantages of hierarchical models

- Improved estimates for repeated sampling: When more than one observation arises
from the same group (individual, location, or time), then traditional, single-level
models either underfit or overfit the data.

- Improved estimates for imbalance in sampling: When some groups are sampled
more than others, multilevel models prevent over-sampled groups from unfairly
dominating inference.

- Estimates of variation: multilevel models model variation explicitly, allowing the
exploration of individual-level and group-level variation.

- Avoid averaging, retain variation: Frequently, scholars pre-average some data to

construct variables for a regression analysis. This can be dangerous, because averaging
removes variation. Multilevel models allow us to preserve the uncertainty in the
original, pre-averaged values, while still using the average to make predictions.

McElreath Chapman and Hall/CRC 2020
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Multilevel/hierarchical approach

2
Estimates y, the model i~ N(”i"’ )
outcome (e.g. case counts), M=+ By U
for each observation

e a,~ N(,ua, aa)

Estimates a, the intercept
per group (e.g. average < u |~ Normal (0, 1.5)
number of case counts in * a, a; a; a;a
each region) o [~ |Exponential( 1)
Hyperparameters Hyperpriors

McElreath Chapman and Hall/CRC 2020
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Model terms
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Barcelona
Capturing group-level uncertainty - Interannual @ Conter P uting

Monthly Incidence .
O | e Interannual patterns: is
2017 it ™
= — 50001 %13 == _—_E -1 —
€ o e - there a common pattern
E 50003 40011 [r— - — — I harr . .
—ee  [we ws e 1w 1@, (N caseincidence every
g- — 50005 a%%i%-!_—'-__ )~ ——— _.__ —=
g Bl |- || = several years, e.g. does
= — 50007 29931 e - - o o
— soo o s every third year usually
S 14 l — 50009 2012 _-:_ ; __— — = = __ c;
2 \ ! 50010 %g’ﬁ-_-_ = — o — =
g =
| f | R = I | have more cases on
o RAAELLL L) S W Y WA LAY L — i
1 F 1L 585535325558 535535325538 585535335838
T N e N R T I B average than July?

oooooooooo
NNNNNNNNNN

Autocorrelation: Are
years close to each other
more likely to have
similar values?

. SREANN Yot | ths,t, 0 ~ NegBin(us ¢, 6)
| Fol log(s,¢) = & + Ya(e)

Ofg-f-------mmmmmmmm-- ++ ------------------ a5 -1
_1_+ f + + ¥a ~ Normal(0, 75 °) ———__ Here we assume years are jid,
1t + log(72) = 6. that is, independent from each

| 6, ~ LogGamma(0.01,0.01) other. Other approaches:

...................
mmmmmmmmmmmmmmmmm

random walk order 1 or 2.

Effect Size
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Capturing group-level uncertainty - Seasonal @ Conter P uting

50001 50002 50003 50004 . .
2000 | N Seasonality: is there a common pattern
1000 \ Yol . . .
\ SN &L = oo in case incidence every year, e.g. does
g, Lo — 03— 2019 January usually have more cases on
% 1500 L — 2004 2014
g 1000 IR — 2005 — 2015 average than JUly?
e 502: ;éé AN 7 A ;gé — 2006 — 2016

— 207 — Autocorrelation: Are years close to each

50009 50010 50011 §P8355353858
. SLEIE5720020 2008 — 2018 . . .
2009 — 2010 other more likely to have similar values?
1000 'w 2010
500 : = : Qgs ﬁg
0 ==y

} bt } Yot | st 0 ~ NegBin(us t, 6)

} log(is,t) = & + dm(e) Here we use a

Effect Size
o
——
e

m — Om_1 ~ N (0, 77— random walk order 1.
Other approaches:
T ~ Gamma(0.01, 0.01) random walk order 2.

e
——

o
e

January
February 7
March
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May
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September] T
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Month
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Regional patterns: is there a common pattern in case
l incidence in certain regions, e.g. do the northern regions
usually have more cases on average than the southern

ones? . :
Autocorrelation: Are regions close to

each other more likely to have similar
values?

Dengue Incidence/

15000

Spatial random effects Spatial random effects

0.8

Negative spatial No spatial Positive spatial
autocorrelation autocorrelation autocorrelation

Median of the
random effect

I 0.40
0.20
0.00

Effect Size
¢ I3
. o
—_—
N I

FIGURE 8.1: Examples of configurations of areas showing different types of spatial autocorrelation.

Moraga Chapman and Hall/CRC 2019
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N . . ’; ? ‘1; [1’ '; S‘;m Here we use a BYM2 prior for the
sla 57 8 1/ 4 spatial effect. Other approaches
cit 1010 3 include BYM, ICAR, CAR models

C D E D1 1 1 0 1 4
El0 1010 2 Yot | thst. 0 ~ NegBin(us ¢, 6)

log(ps,t) = a+ us + Vs

FIGURE 7.7: Left: Areas of the study region. Right: Spatial weight matrix calculated /

by assuming neighboring areas share a common boundary, and sum of weights for
Structured Unstructured

spatial effect spatial effect

each area.

ICAR model g is an adjacency matrix used to

) calculate the ICAR (Intrinsic 1—¢ E
ey e . — ¥ o *
ui|u—i Nié—%“ —nu ) Conditional Auto-Regressive) model Us+ Vg = p Vs + s U

used for the prior of the structured

i

| . spatial effect. . -
Us; =1y, Zj€5i & The effect of each area i is normally ug ~1CAR(g) v ~ Normal(0, 1)

distributed with a mean equal to the s

average of its neighbors and a T ~ PC-Precision(c = 0.5/0.31, a = 0.01)
M5, =number of neighbors of areai  variance decreasing with the ¢ ~ PC-Mixing(¢p = 0.5, o = 2/3)
number of neighbors.

51' - =neighbors of area i

Moraga Chapman and Hall/CRC 2019
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Polynomials
second order polynomial third order polynomial
linear quadratic cubic
(= (=] o
27 Y 2 ®
o (= o
=] - ]
¥ g N
0 2 @
2 8 2 81 K
o o Q
8 8 8
8 1 8 1 8 -
Qo (=2 o
w0 o ©o
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Temperature anomaly Temperature anomaly Temperature anomaly

pp=a+ pixy
H,=a+ ﬂlxi1+ﬂ2x2i1
H,=a+ ﬂlxi1+ﬂ2x2i1+ﬂ3x3il

McElreath Chapman and Hall/CRC 2020



Predictor effects - Non-linear
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S0 100 110 120

800 1000 1200 1400
year

SN

parameter basis function

McElreath Chapman and Hall/CRC 2020

u.=a + WlBi T szl.’2+ W3Bi,3+ ..

1600 1800 2000

K
— pi=a+ ZWkBk,i

k=1

Divide the range of x
variable into parts.
Each part has:

B: basis function: a
“synthetic” predictor
variable

w: weight parameter:
acts like a slope,
adjusting the influence
of each basis function
on the mean g,
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Barcelona
Predictor effects - Non-linear @ Supercamputing

Splines

B =1 B #0:B,#0
Divide the range of x
knot variable into 4 parts
using 5 knots placed
at even quartiles of
the data.
B: basis function:
tells you how close
you are to each knot.

BB, B,,B;=0 B3,B,,Bs=0

1

basis value

800 1000 1200 1400 1600 1800 2000
year

McElreath Chapman and Hall/CRC 2020



Predictor effects - Non-linear
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800 1000 1200 1400 1600 1800 2000
=
=2
[1¥]
.-; o
o
[T+
A
800 1000 1200 1400 1600 1800 2000
t year
WiB 15001 WaB 12002 > 0

McElreath Chapman and Hall/CRC 2020

w: weight parameters:
are estimated by fitting
the model to the data.

They can be positive or
negative.

Each basis function (B) is
multiplied by its
corresponding weight
parameter (w).

To predict for a given
value of x, add the
weighted basis functions
for that value.
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How to define spline flexibility?
- Number of knots

Knots = 5; Polynomial degree = 1 Knots = 15; Polynomial degree = 3 - Placement of knots:
i o s R s +++++++++++ Usually at evenly spaced
° 1 ' 5 S
E F intervals (equal number
i ‘ “ i ,"'“"""""""""""’ of x values) or
800 1000 1200 1;:°ar 1600 1800 2000 ’ + :oo ) PZZL .o quantiles (equal number

of observations)

- Polynomial degree:
defines how many basis
functions combine at
each point (value of x),
m me e e mm o w oo e ww e w0 that js, how many
parameters interact to
produce the spline.

basis * weight
0
| +
+
+
+
basis * weight
0

800 1000 1200 1400 1600 1800 2000 800 1000 1200 1400 1600 1800 2000

90 100 110 120

Average precipitation
Average precipitation
90 100 110 120

McElreath Chapman and Hall/CRC 2020



Forecasting for early
warning systems
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0.03 1

With the fitted model, we can predict case
counts (posterior predictive distribution).

Density

0.014

0.004

600

120 140 160 180 200
Predictions
S
2
2 Fletcher et al (2025)
é 200
0 D M\

T T T T T T T T T
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year



Early warning systems: Outbreaks

Alternatively, we can communicate our predictions in terms of outbreaks (yes/no)
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that can trigger the early warning system.

0.034

0.024

Density

0.014

0.004

120

140

?

160
Predictions

180

200 \

How do we define the outbreak threshold?

e A quantity defined with the stakeholders.

® A certain quantile of the observed cases.

e Mean+¢-SD.

We can calculate the probability of
exceeding a threshold: outbreak probability




Early warning systems: computing probability trigger threshold @ Supereempuiing
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Outbreak probability (%)

B Low risk (<29%) [ Medium risk (29% to <50%)
@ High risk (50% to <70%) M Very high risk (70-100%)

2021-22
2020-21

2019-20

2018-19

We can communicate the probability of 201718
outbreaks using different ranges 201637

Year

2015-16

2014-15
We can also see how our systems performs 2013-14
using cross-validation e

2 I N N T - B SR
\0(\ \\P\‘x Y))Q “)& 0(/ eo QQ' \’b <<?/ @ ’b‘b YQ«\ @'bﬁ
Month

Source: Fletcher et al. (2025) 40
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Time for questions

Ania Kawiecki Peralta (ania.kawiecki@bsc.es)

Carles Mila Garcia (carles.milagarcia@bsc.es)

© [2026] [BSC]. This work is licensed under CC BY-NC 4.o0.
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Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.Cambridge University Press.

https://doi.org/10.1017/CBO9780511790942

McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). Chapman and Hall/CRC.
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